

Welcome to WOUDC Data Registry’s documentation!

Contents:

	Overview

	Installation
	Requirements

	Instructions

	Configuration

	Administration
	Creating Backends

	Deleting Backends

	Populating Backends

	Running
	Model Interface

	Ingestion

	Verification

	UV Index generation

	Total Ozone table generation

	OzoneSonde table generation

	Peer data centre indexing

	Operator Workflows
	Gathering

	Processing

	Notifications

	Publishing

	Publishing

	Development
	Dataset Table Definitions

	Support

	License

	Reference

Indices and tables

	Index

	Module Index

	Search Page

Overview

Installation

The WOUDC Data Registry is available on GitHub.

Requirements

	Python [https://python.org] 3 and above

	virtualenv [https://virtualenv.pypa.io]

	ElasticSearch [https://www.elastic.co/products/elasticsearch]
5.5.0 and above

Other requirements are as listed in requirements.txt, and are installed
during project installation.

Instructions

	
	Create and activate a virtual environment::
	
virtualenv woudc-data-registry

cd woudc-data-registry

source bin/activate

	
	Install the project::
	
git clone https://github.com/woudc/woudc-data-registry.git

cd woudc-data-registry

pip install -r requirements.txt # Core dependencies

pip install -r requirements-pg.txt # For PostgreSQL backends

python setup.py build

python setup.py install

	
	Set up the project::
	
. /path/to/environment/config.env # Set environment variables

Continue by creating databases as per instructions in
Administration

Configuration

The WOUDC Data Registry is configured mostly using environment variables.
Operators will be provided with environment files which set these variables
appropriately. Executing one of these environment files is required before
running the WOUDC Data Registry.

Some of the environment variables are paths to more specific configuration
files. All these paths are interpreted on the machine where the Data Registry
is running, and most of the files are included with the WOUDC Data Registry
project in the /data and /data/migrate folders.

Any configuration options can be changed directly in the environment after
running an environment file.

	WDR_LOGGING_LOGLEVEL
	Minimum severity of log messages written to the log file.

	WDR_LOGGING_LOGFILE
	Full path to log file location.

	WDR_DB_DEBUG
	Whether to include log messages from the database in logging output.

	WDR_DB_TYPE
	DBMS used to host the Data Registry (e.g. sqlite, postgresql).

	WDR_DB_HOST
	HTTP URL to Data Registry DB host, or filepath to Sqlite DB file if applicable.

	WDR_DB_PORT
	Port number for Data Registry DB host, if applicable.

	WDR_DB_NAME
	Name of Data Registry schema within the DB.

	WDR_DB_USERNAME
	Username for Data Registry DB user account.

	WDR_DB_PASSWORD
	Password for Data Registry DB user account.

	WDR_SEARCH_TYPE
	DBMS used to host the Search Index (e.g. elasticsearch)

	WDR_SEARCH_URL
	HTTP URL to Search Index host.

	WDR_WAF_BASEDIR
	Path to WAF files system location on the host machine.

	WDR_WAF_BASEURL
	HTTP URL to WAF location on the web.

	WDR_TABLE_SCHEMA
	Path to JSON schema for table definition file, on the host machine.

	WDR_TABLE_CONFIG
	Path to table definition file on the host machine.

The file defines the structure of tables expected in Extended CSV input
to the Data Registry, including those that must appear in every Extended
CSV file as well as those that appear only with specific datasets.

All tables have a list of required and optional fields, a range of
allowable numbers of rows, and a range of allowable number of appearances
in the file. File metadata must be sufficient to identify which table
definitions must or may show up in the file.

	WDR_ERROR_CONFIG
	Path to error definition file on the host machine.

The file defines error types and messages and their severity. All entries
listed as type Error in this file cause the WOUDC Data Registry to stop
processing an input. Entries of type Warning may be recovered from,
and the Data Registry may be able to process a file regardless of any
Warnings it receives.

Warnings and Errors are logged in the Operator Report as part of the
WOUDC Data Registry’s core workflow.

	WDR_ALIAS_CONFIG
	Path to alias configuration file on the host machine.

The file defines alternate spellings for certain fields in input files.
If encountered, any of these alternate spellings are substituted for one
standard spelling, unless this substitution is marked as type Error in
the error definitions file.

To display all configurations from woudc-data-registry, run woudc-data-registry admin config

Administration

In addition to the project code itself, WOUDC Data Registry depends on several
databases which must be set up before the project can run.

The core backend, referred to as the Data Registry, is an archive of file
metadata and links using a relational database, currently PostgreSQL. The
Data Registry is the trusted and long-term source of file metadata, history
and versioning, and file location.

The secondary backend, known as the Search Index, is derived from the Data
Registry and is currently kept in ElasticSearch. The Search Index is
denormalized and will contain additional metrics data for quick access.

The whole file contents, as opposed to metadata only, are stored in the WOUDC
Web Accessible Folder [https://woudc.org/archive/Archive-NewFormat/]
(WAF) and are linked via URLs in both the Data Registry and Search Index.

The Search Index is intended for use by web applications and for searchability,
while the Data Registry is intended for internal operations and to prop and
compare against the Search Index in case of error.

Creating Backends

	make ENV=/path/to/environment/config.env createdb
	Create the Data Registry database instance

	woudc-data-registry admin registry setup
	Create Data Registry tables and schema

	woudc-data-registry admin registry setup
	Create Search Index mappings

Deleting Backends

	woudc-data-registry admin registry teardown
	Delete all Data Registry tables and schema

	woudc-data-registry admin search setup
	Delete all Search Index indexes and mappings

	make ENV=/path/to/environment/config.env dropdb
	Delete the Data Registry database instance

Populating Backends

When necessary, the entire history of data records can be recreated by
processing all files in the WAF (backfilling). Not all metadata
can be extracted from these files, and so there are alternate methods to
recreate metadata from scratch.

If the Data Registry is empty, its metadata is recovered from a
series of files. The WOUDC Data Registry code comes with two files
in the data/init directory:

	ships.csv

	countries.json

The .csv and .json files contain core metadata for the Data Registry.
Contact WOUDC to provide the remaining required metadata files.

After ensuring all metadata files are together in one directory, run:

	woudc-data-registry admin init -d <initialization> <flags>
	Searches the directory path <initialization> for .csv and .json files
of metadata, and loads them into the Data Registry tables. If the
–init-search-index flag is provided, loads them to the Search Index
as well.

If the Data Registry is filled but not the Search Engine, the latter can be
populated by using the sync command (see Publishing).

Running

Model Interface

The model interface allows for direct access to the Data Registry’s contents
from the command line for certain types of metadata records.

Operations include viewing records, adding or deleting records, and updating
existing records.

Main use cases for the interface are to add missing metadata records or new
records during a processing run, or to fix small numbers of out-of-date
or damaged records between processing runs.

	woudc_data_registry project list
	List all overarching projects in the Data Registry.

	woudc_data_registry dataset list
	List all datasets received by the Data Registry.

	woudc_data_registry station list
	List all stations that participate in the WOUDC project.

	woudc_data_registry contributor list
	List all contributors to the WOUDC project.

	woudc_data_registry instrument list
	List all instruments that have recorded data for WOUDC submissions.

	woudc_data_registry deployment list
	List all contributor deployments that have submitted to the WOUDC project.

	woudc_data_registry station add <options>
	Add a station record to the Data Registry, with metadata as specified by
options:

-id IDENTIFIER WOUDC station identifier.

-gi GAW_ID GAW station identifier.

-n NAME Name of the station.

-t TYPE Type of the station or ship.

-g GEOMETRY Latitude, longitude, and elevation of the station.

-c COUNTRY Country where the station is located.

-w WMO_REGION_ID WMO identifier for station’s continent/region.

-sd START_DATE Date when the station became active.

-ed END_DATE Date when the station became inactive.

	woudc_data_registry contributor add <options>
	Add a WOUDC contributing agency to the Data Registry, with metadata
as specified by options:

-n (name) Full name of the contributor

-a (acronym) Abbreviated name of the contributor

-p (project) Overarching project that the contributor is a member of

-g (geometry) Latitude and longitude for the contributor’s headquarters

-c (country) Contributor’s country of origin or country of operation

-w (wmo_region) WMO identifier for contributor’s home continent/region

-u (url) HTTP URL to the contributor’s home webpage

-e (email) Address for central contact to the contributing agency

-f (ftp_username) Username for the contributor in the WOUDC FTP

	woudc_data_registry instrument add <options>
	Add an instrument to the Data Registry with metadata as specified by
options:

-n (name) Name of the producing company or source of the instrument

-m (model) Instrument model name

-s (serial) Instrument serial number

-d (dataset) Type of data the instrument is able to record

-st (station) Station from where the instrument is operated

-g (geometry) Latitude and longitude where the instrument is located

	woudc_data_registry deployment add <options>
	Add a contributor deployment to the Data Registry with metadata as
specified by options:

-c (contributor) ID of the contributor in the Data Registry

-s (station) Station WOUDC ID where the contributor is operating

-sd (start_date) Date when the deployment started

-ed (end_date) Date when the deployment ended

	woudc_data_registry station update -id <identifier> <options>
	Modify an existing station record in the Data Registry with the ID
<identifier> as specified by options:

-gi (gaw_id) GAW station identifier

-n (name) Name of the station

-t (type) Type of the station or ship

-g (geometry) Latitude, longitude, and elevation of the station

-c (country) Country where the station is located

-w (wmo_region) WMO identifier for station’s continent/region

-sd (start_date) Date when the station became active

-ed (end_date) Date when the station became inactive

	woudc_data_registry contributor update -id <identifier> <options>
	Modify an existing contributor record in the Data Registry with the ID
<identifier>, and possibly change it to a new ID, as specified by options:

-n (name) Full name of the contributor

-a (acronym) Abbreviated name of the contributor

-p (project) Overarching project that the contributor is a member of

-g (geometry) Latitude and longitude for the contributor’s headquarters

-c (country) Contributor’s country of origin or country of operation

-w (wmo_region) WMO identifier for contributor’s home continent/region

-u (url) HTTP URL to the contributor’s home webpage

-e (email) Address for central contact to the contributing agency

-f (ftp_username) Username for the contributor in the WOUDC FTP

	woudc_data_registry instrument update -id <identifier> <options>
	Modify an existing instrument record in the Data Registry with the ID
<identifier>, and possibly change it to a new ID, as specified by options:

-n (name) Name of the producing company or source of the instrument

-m (model) Instrument model name

-s (serial) Instrument serial number

-d (dataset) Type of data the instrument is able to record

-st (station) Station from where the instrument is operated

-g (geometry) Latitude and longitude where the instrument is located

	woudc_data_registry deployment update -id <identifier> <options>
	Modify an existing contributor deployment record in the Data Registry
with the ID <identifier>, and possibly change it to a new ID, as
specified by options:

-c (contributor) ID of the contributor in the Data Registry

-s (station) Station WOUDC ID where the contributor is operating

-sd (start_date) Date when the deployment started

-ed (end_date) Date when the deployment ended

	woudc_data_registry station|contributor|instrument|deployment show <id>
	Display all information in the Data Registry about the record which has
the identifier <id> under the specified metadata type (station,
contributor, instrument, or deployment)

	woudc_data_registry station|contributor|instrument|deployment delete <id>
	Delete the record with identifier <id> from the Data Registry, under the
specified metadata type (station, contributor, instrument, or deployment).

Ingestion

The primary workflow involving the WOUDC Data Registry is ingestion, or bulk
processing, of input files. Ingest commands sequentially parse, validate,
repair, break down and upload contents of these files to the Data Registry
as well as the Search Index. A copy of the incoming file is sent to the WAF.

	woudc_data_registry data ingest <input_source> <flags>
	Ingest the incoming data at <input_source>, which is either a path to a
single input file or to a directory structure containing them. Output
log files and reports are placed in <working_dir>. <flags> are
as follows:

-y (yes) Automatically accept all permission checks

-l (lax) Only validate core metadata tables, and not dataset-specific
metadata or data tables. Useful when data is presented in
old formats or is formatted improperly and cannot be
repaired but must be ingested anyways, such as
during backfilling.

Verification

A secondary workflow in the WOUDC project is input file verification or
error-checking. As a mock ingestion, the same logging output is released as in
ingestion (including to the console) but no changes are made to the
Data Registry or Search Engine backends.

This workflow finds whether files are properly formatted, which can inform
contributors whether their file generation processes and their metadata are
correct. WOUDC Data Registry developers may also use the verification command
to test ingestion routines on dummy input files without inserting dummy data
into the backends.

	woudc_data_registry data verify <input_source> <flags>
	Verify the incoming data at <input_source>, which is either a path to a
single input file or to a directory structure containing them.
<flags> are as follows:

-y (yes) Automatically accept all permission checks

-l (lax) Only validate core metadata tables, and not dataset-specific
metadata or data tables. Useful when only core tables and
metadata are important or when dataset-specific tables are
known to contain errors but nothing can be done about them,
such as during backfilling.

UV Index generation

An hourly UV Index can be generated using data and metadata from WOUDC Extended
CSV data. In particular, files from the Broadband and Spectral datasets are used
in this process. The UV Index can be generated from a single process to build the
entire index.

	woudc-data-registry product uv-index generate <flags> /path/to/archive/root
	Delete all records from the uv_index_hourly table and use all Spectral
and Broadband files to generate uv_index_hourly records. <flags> are as
follows:

-y (yes) Automatically accept all permission checks

	woudc-data-registry product uv-index update <options> <flags> /path/to/archive/root
	Only generate uv_index_hourly table entries using files within a year range.
No records are deleted. If a start or end year is not specified, then no lower
or upper bound will be used within the year range.
<flags> are as follows.

-y (yes) Automatically accept all permission checks

<options are as follows.

-sy (start-year) Optional lower bound of year range

-ey (end-year) Optional upper bound of year range

Total Ozone table generation

A Total Ozone table can be generated using data and metadata from WOUDC TotalOzone
Extended CSV files. This table provides a more detailed representation of TotalOzone
data and allows specific measurements to be directly queried.

	woudc-data-registry product totalozone generate <flags> /path/to/archive/root
	Delete all records from the totalozone table and use all TotalOzone files
to generate totalozone records. <flags> are as
follows:

-y (yes) Automatically accept all permission checks

OzoneSonde table generation

An OzoneSonde table can be generated using data and metadata from WOUDC OzoneSonde
Extended CSV files. This table provides a more detailed representation of OzoneSonde
data and allows specific measurements to be directly queried.

	woudc-data-registry product totalozone generate <flags> /path/to/archive/root
	Delete all records from the totalozone table and use all TotalOzone files
to generate totalozone records. <flags> are as
follows:

-y (yes) Automatically accept all permission checks

Peer data centre indexing

WOUDC supports indexing the following remote data centres:

	Eubrewnet

	NDACC

woudc-data-registry peer eubrewenet index -fi /path/to/data-centre-file-index.txt

woudc-data-registry peer ndacc index -fi /path/to/data-centre-file-index.txt

Operator Workflows

Every Monday the WOUDC Data Registry is updated with new files submitted over
the past week from various contributors. Files are either successfully ingested
immediately, have recoverable errors that are fixed manually, or have errors
that are irrecoverable and fail to process. Contributors are alerted to their
failing files and given feedback on their errors, and may attempt to resubmit
the files later.

Gathering

TODO

Processing

In the processing stage, incoming files go through a series of validation
checks and are assessed for formatting and metadata errors. Files that pass
are chunked and stored in the Data Registry, the DEV Search Engine, and the
WAF and become publicly visible.

The operator’s role is to help assess and respond to errors that the
WOUDC Data Registry program can’t deal with, such as correcting formatting or
correcting bad metadata, until as many of the incoming files can be persisted
as possible.

	Setup:
	
	Start a new screen session using screen -S processing-<currentdate>

	Switch to (or create) the WOUDC Data Registry master virtual environment

	Create a working directory at /apps/data/incoming-<currentdate>-run

	Run the master environment file to set environment variables
and configurations

	Processing:
	
	Attempt to process all incoming files from the week:

	woudc_data_registry data ingest /apps/data/incoming/<currentdate> -w /apps/data/incoming-<currentdate>-run

	Watch for the occasional prompt as a new instrument, station name, or
contributor deployment is found.

	Some files will fail to be processed because of a recoverable or
irrecoverable error. Recoverable errors can be fixed between runs
and reprocessed, but files with irrecoverable errors need not be
processed again until the contributor resubmits them later.

	To reprocess a selection of failed files:

	Copy the selection of files to a new directory, named failing_files,
within the working directory and run:

	woudc_data_registry data ingest /apps/data/incoming-<currentdate>-run/failing_files

	And then continue to reprocess failures from these runs using the
second command.

	Once a file has been processed successfully, do not move it to a new
location!

Notifications

	Create a file named /apps/data/incoming-<currentdate>-run/failed-files-<currentdate>.
This file can be created and edited while processing is going on.

	The file contains one block for each contributor that submitted data
in the previous week, and begins with the contributor’s acronym in all
uppercase, a space, and a semicolon-separated email list between
parentheses. Following the header is a summary block
as shown here [https://gccode.ssc-spc.gc.ca/woudc/woudc-bps/blob/master/etc/failed_files_email_template.txt#L13].

	Fill in the file with pass/fix/fail counts for each contributor.
Also, in each contributor block, document error messages and the
files they affected in Summary of Fixes and Summary of Failures blocks.

	Contributor email can be fetched using a SQL query to the Data Registry
like this one:

	SELECT acronym, email FROM contributors JOIN deployments USING (contributor_id) WHERE station_id = ‘…’

	Where … is replaced with the #PLATFORM.ID from any of the input files
from that contributor.

	#PLATFORM.ID is used in the query because most files get it right, while
some files have the wrong agency name. If the #PLATFORM.ID seems wrong,
feel free to query the contributor using a different field.
than other fields.

	Another operator will use this email report as the basis for a feedback
email message to each contributor.

Publishing

TODO

Publishing

Currently, processing a file updates the Search Index with its metadata
as long as the file passes validation. This way the Search Index and
Data Registry should stay synchronized as long as no manual changes are made.

In case the Data Registry and Search Index become desynchronized, there is a
command to resync them. This command is destructive and cannot be undone,
so use with caution and only when the Data Registry’s content is trusted.

	woudc-data-registry admin search sync
	Synchronize the Data Registry and Search Index exactly, using the Data
Registry as a template. First inserts or update records in the Index to
match the row with the same ID in the Registry, and then deletes excess
documents in the Index with no ID match in the Registry.

In the future, whether to add elements to the Search Index while processing
may turn into a configuration option.

Development

Dataset Table Definitions

Tables in Extended CSV files must conform to a certain format, and certain
tables are required for each dataset. The specifications for table formatting
are defined in table definition files, two of which are provided with the
WOUDC Data Registry codebase.

data/tables.yml is a table definition file for production use when processing
incoming files. data/migrate/tables-backfilling.yml is an alternative table
definition file for backfilling the registry with historical files. The second
file is looser on required tables and fields to allow flexibility with older
WOUDC formats.

Table Definition Format

Table definition files are made up of organized sections of table definitions.
Each table definition is a dictionary-type element (in a JSON or YAML file or
equivalent) which defines the shape and expected fields of a table.

A table definition is formatted like this (example in YAML):

table_name:
 rows: <range of rows>
 occurrences: <range of occurrences>
 ~required_fields:
 - list
 - of
 - required
 - fields
 ~optional_fields:
 - list
 - of
 - optional
 - fields

Optional keys are prefixed with the ~ character.

In a table definition, a range of integers a < b is specified by a string
with one of the following forms:

b The discrete number b.
a-b The range of integers between a and b (inclusive).
b+ The range of integers with no upper bound starting at b.

The rows key defines the allowable height range for the table, i.e. the
number of rows the table must have.

The occurrences key defines the allowable range of number of times the
table appears in the file. If 0 is included in the range then the table
as a whole is optional and may be left out of a file.

The (optional) required_fields key defines a list of field names that must
appear in the table. If any of these fields is missing from the file, the
table will be considered invalid. All tables must have at least one required
field.

The (optional) optional_fields key defines a list of field names that may
appear in the table but are not required.

Dataset Definition Format

The set of table definitions varies based on which type of data the file
contains. Table definition files express this by organizing table definitions
into sections.

Some tables are common to all Extended CSV files. The Common key at the top of
a table definition files contains the definitions for all these shared tables.

Besides the common tables, the table definitions that apply to an Extended CSV
file depend on certain fields within the file.

The table definitions apply depend on the file’s dataset (the type of data
contained, controlled by the #CONTENT.Category value), its level (of QA,
controlled by the #CONTENT.Level value), and its form (controlled by its
#CONTENT.Form value). In some cases there are multiple allowable table
definitions for the same dataset, level, and form, in which case each option
is assigned an integer version number starting from 1.

A dataset definition is formatted like this (example in YAML):

dataset_name:
 "level":
 "form":
 table definition 1
 table definition 2
 ...
 data_table: <name of data table>
 ..
 ..

OR:

dataset_name:
 "level":
 "form":
 "version":
 table definition 1
 table definition 2
 ...
 data_table: <name of data table>
 ..
 ..
 ..

The numeric level, form, and version keys all must be surrounded by double
quotes to force them to be strings. There may be multiple level keys in a
dataset, multiple forms within a level, and multiple versions within a form.

In the innermost block is a series of table names mapped to table definitions.
The one additional key, data_table, maps to the name of the table containing
observational data. This must correspond to a required table amongst the
table definitions in that block.

Asserting Correctness

The WOUDC Data Registry process validates all table definition files against a
schema before using them. The schema is written using JSON schema language and
is stored at data/table-schema.json.

WOUDC developers adding to a table definitions file can use JSON schema
validation tools to check that their additions are in the right format.

Support

License

Reference

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to WOUDC Data Registry’s documentation!

 		
 Overview

 		
 Installation

 		
 Requirements

 		
 Instructions

 		
 Configuration

 		
 Administration

 		
 Creating Backends

 		
 Deleting Backends

 		
 Populating Backends

 		
 Running

 		
 Model Interface

 		
 Ingestion

 		
 Verification

 		
 UV Index generation

 		
 Total Ozone table generation

 		
 OzoneSonde table generation

 		
 Peer data centre indexing

 		
 Operator Workflows

 		
 Gathering

 		
 Processing

 		
 Notifications

 		
 Publishing

 		
 Publishing

 		
 Development

 		
 Dataset Table Definitions

 		
 Table Definition Format

 		
 Dataset Definition Format

 		
 Asserting Correctness

 		
 Support

 		
 License

 		
 Reference

_static/minus.png

_static/plus.png

_static/file.png

